Пт. Май 3rd, 2024

Назначение. Синхронные машины используют в качестве генераторов и двигателей. Синхронные генераторы вырабатывают электрическую энергию трехфазного тока. Почти все генераторы переменного тока, устанавливаемые на больших и малых электрических станциях, являются синхронными. Мощность этих генераторов может быть самая различная, начиная от нескольких киловольт-ампер (на передвижных электростанциях) и кончая несколькими сотнями тысяч киловольт-ампер (на мощных центральных электростанциях). В Советском Союзе создан самый большой в мире синхронный генератор мощностью 1200 тыс. кВ*А. Синхронные двигатели используют, главным образом, для мощных электрических приводов. Синхронные генераторы применяют на тепловозах с электрической передачей переменно-постоянного тока. На этих тепловозах напряжение, полученное от синхронного генератора, выпрямляется полупроводниковыми преобразователями и подается на тяговые двигатели постоянного тока.

Принцип действия. На статоре 2 синхронной машины располагается трехфазная обмотка 1 (рис. 1,а), а на роторе 4 — полюсы (электромагниты) с обмоткой, питаемой постоянным током через контактные кольца 3 и щетки. Обмотка 5 полюсов, создающая магнитный поток возбуждения машины, называется обмоткой возбуждения.

Рис. 1. Электромагнитная схема синхронной машины (а), и схемы ее включения (б и в): 1—трехфазная обмотка статора; 2— ротор; 3— обмотка возбуждения; 4, 5 — обмотки якоря

Статор синхронной машины ничем не отличается от статора асинхронной машины; его обмотка имеет три (в двухполюсной машине), шесть (в четырехполюсной) или большее число катушек, сдвинутых одна относительно другой на соответствующие углы (120° или 60° и т. д.). При вращении ротора 4 с некоторой частотой n поток возбуждения пересекает проводники обмотки статора и индуцирует в ее фазах переменную э. д. с. Е1, изменяющуюся с частотой:

f1 = pn/60 (1)

Благодаря тому что обмотки трех фаз синхронного генератора сдвинуты в пространстве на угол 120°, индуцируемые в них э. д. с. будут сдвинуты одна относительно другой по фазе на 1/3 периода. Если к обмотке статора подключить какую-либо нагрузку, то протекающий по этой обмотке трехфазный ток создает вращающееся магнитное поле, частота вращения которого:

n1 = 60f1/p (2)

Из формул (1) и (2) следует, что n = n1, т. е. ротор вращается с той же частотой, что и магнитное поле статора. По этой причине рассматриваемая машина называется синхронной. В такой машине результирующий магнитный поток Фрез создается совместным действием магнитодвижущих сил обмотки возбуждения и обмотки статора и вращается в пространстве с той же частотой вращения, что и ротор.

В синхронной машине обмотка 1 (рис. 1,б), в которой индуцируется э. д. с. и протекает ток нагрузки, называется обмоткой якоря, а часть машины, на которой расположена обмотка возбуждения,— индуктором. Следовательно, в машине, выполненной по схеме, показанной на рис. 1, статор является якорем, а ротор — индуктором. С точки зрения принципа действия и теории работы машины безразлично — вращается якорь или индуктор, поэтому в некоторых случаях применяют синхронные машины с обращенной электромагнитной схемой: у них обмотка якоря, к которой подключается нагрузка, располагается на роторе, а обмотка возбуждения, питаемая постоянным током,— на статоре.

Обмотка якоря обычно имеет семь выводов: от начал А, В, С и концов X, Y, Z фаз и от нулевой точки 0. Это дает возможность соединять фазы и подключать к ним нагрузку по различным схемам: «звезда», «звезда с нулевым проводом» и «треугольник».

Таким образом, синхронная машина имеет следующие особенности: ротор машины, работающей как в двигательном, так и в генераторном режимах, вращается с постоянной частотой вращения, равной частоте вращения вращающегося магнитного поля, т. е. n = n1; в обмотке ротора э. д. с. не индуцируется, а магнитное поле создается постоянным током, подводимым от внешнего источника, или постоянными магнитами.

Синхронные генераторы тепловозов с электропередачей переменно-постоянного тока имеют две обмотки якоря 6 и 7 (рис. 1, в), фазы которых OA и О’А’, ОВ и О’В’ и ОС и О’С’ сдвинуты на 30°. Выводы обмоток якоря подключены к полупроводниковому выпрямителю. В результате сдвига фаз обмоток якоря существенно уменьшается пульсация напряжения и тока на выходе выпрямителя, что улучшает работу тяговых двигателей постоянного тока (см. главу III).

Возбуждение синхронной машины. В качестве источника постоянного тока для питания обмотки возбуждения 1 синхронной машины может служить генератор постоянного тока 4 (возбудитель), установленный на валу ротора синхронной машины (рис. 2, а), или полупроводниковый выпрямитель 5, присоединенный к обмотке якоря 2 (рис. 2,б). Питание обмотки возбуждения от полупроводникового выпрямителя все более широко применяется как в двигателях и генераторах небольшой и средней мощности, так и в мощных турбо- и гидрогенераторах.

Рис.2. Схемы питания обмотки возбуждения от возбудителя (а) и от полупроводникового выпрямителя (б)

Регулирование тока возбуждения осуществляется вручную регулировочным реостатом 3, включенным в цепь обмотки возбуждения, или автоматически специальными регуляторами. Мощность, необходимая для возбуждения, составляет 0,3—3 % мощности синхронной машины, поэтому возбудитель или выпрямитель имеет малые размеры по сравнению с синхронной машиной.

От content

Ads Blocker Image Powered by Code Help Pro

Обнаружен блокировщик рекламы! Пожалуйста, обратите внимание на эту информацию.

We\'ve detected that you are using AdBlock or some other adblocking software which is preventing the page from fully loading.

У нас нет баннеров, флэшей, анимации, отвратительных звуков или всплывающих объявлений. Мы не реализовываем эти типы надоедливых объявлений! Нам нужны деньги для обслуживания сайта, и почти все они приходят от нашей интернет-рекламы.

Пожалуйста, добавьте tehnar.info к вашему белому списку блокирования объявлений или отключите программное обеспечение, блокирующее рекламу.

Powered By
Best Wordpress Adblock Detecting Plugin | CHP Adblock