Пт. Апр 5th, 2024

Для жесткого (с малой длиной волны) рентгеновского излучения удобнее использовать способ Лауэ, где наблюдается дифракционная картина, образованная излучением, прошедшим через кристалл. При содействии с рентгеновским излучением кристалл действует как трёхмерная дифракционная решётка, формирующая на фотопластинке за недвижным кристаллом диапазон рентгеновского излучения в виде отдельных точек, расположенных вокруг центрального пятна (рис. 2.3).

Открытое в 1912 фон Лауэ с сотрудниками явление дифракции рентгеновского излучения на кристаллах употребляется для рентгеноструктурного анализа веществ. Дифракционная картина появляется в итоге интерференции волн, рассеянных отдельными атомами кристалла. Основной вклад в рассеяние дают обязанные колебания электронов внутренних оболочек атомов, возбуждаемые электронным полем рентгеновского излучения. Рассеивающая способность атома определяется его электрической плотностью и растёт с повышением порядкового номера (зарядового числа) элемента (если длина волны меньше размера препятствия, то она отражается, если больше – огибает, если размеры сравнимы — ведет взаимодействие).

Рис. 2.3 Способ Лауэ.

1 – первичное рентгеновское излучение, 2 — диафрагмы, 3 – кристалл, 4 – фотопластинка.

Каждому пятну на лауэграмме (не считая центрального) соответствует определённая длина волны. В случае кубической кристаллической решётки при дифракции на системе плоскопараллельных атомных плоскостей, определяемых миллеровскими индексами () длина волны максимума

, (2.7)

где — направляющие косинусы углов для падающего рентгеновского луча относительно избранной системы атомных плоскостей (рис. 2.4).

Рис. 2.4 Дифракция на системе плоскопараллельных атомных плоскостей в случае кубической кристаллической решётки

Как и в случае способа Брэгга, из сплошного диапазона падающего излучения кристалл сам выбирает длину волны , нужную для выполнения условия (2.7).

Если в способе Лауэ использовать мягкое (длинноволновое) рентгеновское излучение, то решающую роль будет играть поглощение и на так именуемых адсорбционых рентгенограммах регится «теневое» изображение всасывающего объектива. На рентгеновских снимках кости человека практически всегда темнее, так как они поглощают рентгеновское излучение посильнее, чем прилегающие ткани, благодаря большому содержанию металлов.

В проекционном рентгеновском микроскопе употребляется теневая проекция объекта, приобретенная при помощи расходящегося пучка рентгеновских лучей. Он состоит из рентгеновского источника с микрофокусом , камеры для размещения исследуемого объекта и регистрирующего устройства. Повышение определяется отношением расстояния от объекта до сенсора к расстоянию от источника до объекта. Контраст в изображении появляется благодаря различию в поглощении рентгеновского излучения отдельными участками объекта и определяет чувствительность теневого рентгеновского микроскопа. В качестве сенсоров употребляются фотоплёнка и электронно-оптические преобразователи.

Получение совершенных кристаллов кремния и германия позволило сделать рентгеновские интерферометры. В трехкристальном интерферометре один кристалл расщепляет падающее рентгеновское излучение на две когерентные волны. 2-ой кристалл отражает одну из этих волн в направлении области интерференции. 3-ий кристалл нужен для преобразования приобретенной интерференционной картины атомного масштаба (расстояние меж интерференционными полосами ) в рассредотачивание интенсивности макроскопического масштаба, понижая угол меж интерферирующими волнами.

Способ рентгеновской томографии даёт возможность реконструировать объёмное рассредотачивание физических черт изучаемого объекта. Объект рассматривается как совокупа огромного числа параллельных сечений. Источник и сенсор рентгеновского излучения поочередно перебегает от 1-го поперечного сечения к другому, выполняя для каждого сечения серию измерений. При измерении источник и сенсор находятся в обратных точках периметра сечения, перемещаясь по всему периметру. Для каждого положения производятся два измерения: в отсутствии объекта, при наличии объекта. По приобретенным парам значений интенсивности проводится компьютерная реконструкция трёхмерного рассредотачивания исследуемой физической свойства объекта.

От content

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Ads Blocker Image Powered by Code Help Pro

Обнаружен блокировщик рекламы! Пожалуйста, обратите внимание на эту информацию.

We\'ve detected that you are using AdBlock or some other adblocking software which is preventing the page from fully loading.

У нас нет баннеров, флэшей, анимации, отвратительных звуков или всплывающих объявлений. Мы не реализовываем эти типы надоедливых объявлений! Нам нужны деньги для обслуживания сайта, и почти все они приходят от нашей интернет-рекламы.

Пожалуйста, добавьте tehnar.info к вашему белому списку блокирования объявлений или отключите программное обеспечение, блокирующее рекламу.

Powered By
Best Wordpress Adblock Detecting Plugin | CHP Adblock