Категории: Металлы и сварка

Газовая сварка и наплавка.

В 1-ой зоне, в так называемом ядре, смесь подогревается до воспламенения и происходит частичный распад молекул ацетилена :

С2Н2 ® С2 + Н2.

Во 2-ой зоне, называемой сварочной частью, происходит сгорание ацетилена в чистом кислороде, подаваемом из баллона:

С2 + Н2 + О2 ® СО + Н2.

В 3-ей зоне, называемой факелом, догорает ацетилен в кислороде воздуха:

СО + Н2 + О2 ® СО2 + Н2О.

В зависимости от подачи кислорода можно получить нормальное, окислительное и науглераживающее пламя. При нормальном пламени горючее сгорает полностью; для этого требуется соотношение кислорода с ацетиленом 2,5 :1, причем из баллона поступает 1,1…1,15 его часть, а остальной кислород -из воздуха. Окислительное пламя (избыток кислорода) используется для резки металлов и для сварки латунных деталей. Науглераживающее пламя (при избытке ацетилена в газовой смеси) применяется при сварке чугуна, алюминия и малоуглеродистых сталей.

Кислород получают ( рис. 2.47) методом глубокого охлаждения воздуха до температуры -194,5 °С . При этой температуре кислород уже будет в жидком состоянии ( температура сжижения его –183 °С), а азот будет еще в газообразном состоянии, т. к. температура сжижения у него еще ниже ( -196 ° С).

Кислород хранится в баллонах (голубой или синий цвет окраски ) при начальном давлении 15 МПа . Чаще всего  используются 40 литровые, а при небольших объемах работ — 5-и и 10-и литровые баллоны. Перед работой на баллон ставят кислородный редуктор, с помощью которого устанавливается и автоматически во время работы поддерживается давление кислорода , подаваемого в газовую горелку ( 0.2….0,4 МПа) или кислородный резак (1,2…1,4 МПа).

Масла и жиры в атмосфере кислорода могут самовзгораться,  поэтому при работе нужно соблюдать особую предосторожность: не допускать на рабочем месте грязных тряпок и замасленной ветоши , работать в не замасленных рукавицах.

Ацетилен C2H2 получают взаимодействием карбида кальция CaC2 с водой:

CaC2+ H2O ® C2H2 +Ca (OH)2.

Из 1 кг технически чистого карбида кальция получается 230…300 литров ацетилена.

Ацетиленовые генераторы выполняются по различным схемам:

  1. “Карбид в воду”-карбид кальция из бункера в зависимости от давления ацетилена периодически поступает через питатель в воду. Эти генераторы наиболее производительны и наименее взрывоопасны.
  2. «Вода на карбид» -в реторту с карбидом кальция подается вода в зависимости от давления ацетилена. Эти генераторы небольшой производительности, переносные, низкого давления.
  3. «Погружением» и «вытеснением»- в зависимости от давления ацетилена в первом случае при превышении давления из воды поднимается корзина с карбидом кальция, а во втором –вода вытесняется от карбида кальция в соответствующий сосуд. Это тоже небольшой производительности и переносные генераторы.
  4. Комбинированные схемы.

Для предохранения  ацетиленовых генераторов от взрыва при обратном ударе пламени используются предохранительные водяные затворы.

По давлению ацетиленовые генераторы делятся на:

  • низкого давления    (0,001…0,01 МПа);
  • среднего давления  (0,01…0,15 МПа);
  • высокого давления    ( > 0,15 МПа).

Ацетилен в сжатом состоянии (3,5 МПа ) может храниться в 40, 10 и 5-и литровых баллонах (белый цвет окраски ). Так как ацетилен взрыво- и пожароопасен, то необходимы специальные меры хранения его. Ацетилен очень хорошо растворяется в ацетоне( 23:1) и в растворимом состоянии не взрывается при давлении до 1,6 МПа, а при наличии в баллоне пористой массы (активированный уголь, пемза,…) не взрываются при очень высоких давлениях (свыше 16 МПа). Очень эффективным является использование в баллонах литой пористой массы (ЛПМ). Кроме повышенной взрывоопасности 40-литровые баллоны с массой ЛПМ вбирают до 7,4 кг ацетилена, а с активированным углем –только 5 кг.

По принципу смешивания газов сварочные горелки могут быть: инжекторные и безынжекторные. В инжекторных горелках кислород под давлением 0,2…0,4 МПа через регулировочный вентиль подается в инжектор, через продольные пазы которого подсасывается ацетилен, расход которого также регулируется вентилем. У горелок имеется до 9 сменных наконечников, позволяющих сваривать металлические детали различной толщины. Чем больше номер наконечника, тем больше диаметр проходного сечения горелки и, следовательно, будет больше расход газа, поэтому можно сваривать детали большей толщины. В зависимости от толщины детали выбирается диапазон расхода газа (номер горелки), а в процессе сварки вращением ацетиленового вентиля горелки более точно подбирается оптимальная мощность горения, а вентилем подачи кислорода -необходимый вид пламени ( нейтральное, окислительное или восстановительное). В безынжекторных горелках горючий газ и кислород подаются под одинаковым давлением (0,05…0,1 МПа) в смесительную камеру, выходят из мундштука и сгорают. Эти горелки менее универсальны, сложны в регулировании процесса и используются для сварки очень тонкого материала.

Технология газовой сварки

Диаметр присадочной проволоки d выбирается в соответствии с толщиной свариваемого металла h:

d = h/2 +1, мм.

Мощность горелки подбирается в зависимости от толщины h свариваемых деталей и теплопроводности k материала. Часовой расход ацетилена А находится по формуле:

А=k h,  л/ч,

где — h толщина детали в мм;

k- коэффициент удельного расхода ацетилена в литрах за времени сварки (час) на единицу толщины детали, л/ ч х мм (k=100…120 л/ ч х мм -стальные детали; k= 110…140 л/ ч х мм -чугунные детали ; k=60…100 л/ ч х мм -алюминиевые детали).

При увеличении толщины свариваемого металла надо обеспечить большую концентрацию тепловой энергии и, следовательно, больший угол наклона горелки (рис. 2. 48 ) к поверхности свариваемой детали.

При h<3 мм используется левая сварка (горелка движется справа налево Ü ). Этот способ используется для тонколистового материала; обеспечивается хороший внешний вид сварного шва, т. к. пламя не препятствует наблюдать за зоной сварки.

При h>5 мм используется правая сварка (горелка движется слева направо Þ впереди присадочной проволоки). При этой сварке обеспечивается глубокое проплавление и высокая производительность, качественный шов из-за лучшей защиты расплавленного металла пламенем горючего газа и медленного остывания сварного шва, малая величина зоны термического влияния и меньшие деформации изделия.

Газопрессовая сварка – разновидность газовой сварки. Металл детали нагревают пламенем многосопловой горелки до перехода его в пластическое состояние (1200…1300 °С) и сваривают путем приложения удельной нагрузки 15…25 МПа . Таким образом, можно соединять трубы, рельсы и др.

content

Recent Posts

Магнитное поле тока. Магнитные силовые линии

Разница между энергией электрического поля и энергией магнитного поля примерно такая же, как между энергией,…

12 месяцев ago

Постоянные магниты

Когда-то легендарный пастух Магнес, нашел природный магнитный камень, притягивающий железо. В последствии этот камень назвали магнетит или магнитный…

12 месяцев ago

Соединение конденсаторов

В электрических цепях применяются различные способы соединения конденсаторов. Соединение конденсаторов может производиться: последовательно, параллельно и последовательно-параллельно (последнее иногда называют смешанное соединение конденсаторов). Существующие…

12 месяцев ago

Обозначение конденсаторов

Обозначение конденсаторов на схемах определено ЕСКД ГОСТ 2.728-74. Обозначения условные графические в схемах. Резисторы, конденсаторы. Итак,…

12 месяцев ago

Виды конденсаторов

Узнав, что же такое конденсатор, рассмотрим, какие бывают виды конденсаторов. Итак, виды конденсаторов можно классифицировать по…

1 год ago

Энергия поля конденсатора

Вся энергия заряженного конденсатора сосредотачивается в электрическом поле между его пластинами. Энергию, накоп­ленную в конденсаторе, можно определить…

1 год ago