Подводя итоги сказанному, следует считать установленным существование зарядов и то, что эти заряды воздействуют друг на друга с силой, зависящей как от положения зарядов, так и от их относительного движения, правда в более сложной форме. Мы ввели два вспомогательных понятия, облегчающих вычисление силы, а именно электрическое и магнитное поля, и постулировали, что электрическое поле можно найти, зная распределение зарядов, а магнитное поле — зная распределение токов. Сила, действующая на любую заряженную частицу, определяется из выражения:

Хотя сила Лоренца имеет более сложную структуру, чем те ньютоновские силы, о которых мы говорили раньше (поскольку она зависит не только от положения частицы, но и от ее скорости), все предыдущее рассмотрение было чисто ньютоновским. Наиболее отчетливо это иллюстрируют методы, с помощью которых были открыты силы, действующие на заряженные частицы. Наличие электрических сил обнаруживается по тому, что мелкие предметы, натертые соответствующим образом, движутся к другим предметам, которые также были натерты соответствующим образом. Мы наблюдаем движение и отсюда заключаем, что на тела действуют силы.

Когда Кулон измерял величину силы, действующей между двумя заряженными частицами, он пользовался весами, уравновешивая действие электрической силы действием механической силы, величину которой он знал заранее. Далее он использовал закон инерции: когда тело движется равномерно или находится в покое, сумма приложенных к нему сил равна нулю. При этом подразумевается, что электрическая сила является такой же силой, как механическая, и что ее можно векторно складывать с механическими силами.

Затем было принято, что полная сила, приложенная к телу, составляется из суммы электромагнитной и механической сил и равна произведению массы тела на его ускорение. Нам удалось свести электрическую силу к классу обычных сил, так как мы решили считать равномерное движение по инерции естественным движением в нашей теории. Зависимость силы от скорости является ее второстепенным свойством. Ибо, когда мы рассматриваем движение заряженных тел в присутствии других заряженных тел или токов, мы в конце концов стремимся рассчитать траектории этих заряженных тел, используя второй закон Ньютона и предварительно вычислив Силу Лоренца по найденным электрическим и магнитным полям. Ранее мы привели такой расчет в случае планетарной системы заряженных частиц и в случае движения заряженной частицы в однородном электрическом поле.

Рассмотрим теперь движение заряженной частицы в однородном магнитном поле. Соответствующий расчет не только очень полезен сам по себе, но и служит иллюстрацией того, как обращаться с силой, зависящей от скорости, силой, величина и направление которой определяются скоростью частицы и магнитным полем.

content

Share
Published by
content

Recent Posts

Магнитное поле тока. Магнитные силовые линии

Разница между энергией электрического поля и энергией магнитного поля примерно такая же, как между энергией,…

12 месяцев ago

Постоянные магниты

Когда-то легендарный пастух Магнес, нашел природный магнитный камень, притягивающий железо. В последствии этот камень назвали магнетит или магнитный…

12 месяцев ago

Соединение конденсаторов

В электрических цепях применяются различные способы соединения конденсаторов. Соединение конденсаторов может производиться: последовательно, параллельно и последовательно-параллельно (последнее иногда называют смешанное соединение конденсаторов). Существующие…

12 месяцев ago

Обозначение конденсаторов

Обозначение конденсаторов на схемах определено ЕСКД ГОСТ 2.728-74. Обозначения условные графические в схемах. Резисторы, конденсаторы. Итак,…

12 месяцев ago

Виды конденсаторов

Узнав, что же такое конденсатор, рассмотрим, какие бывают виды конденсаторов. Итак, виды конденсаторов можно классифицировать по…

1 год ago

Энергия поля конденсатора

Вся энергия заряженного конденсатора сосредотачивается в электрическом поле между его пластинами. Энергию, накоп­ленную в конденсаторе, можно определить…

1 год ago