Физика

Электрический ток в металлических проводниках

Во всяком металлическом проводнике имеется громадное количество беспорядочно движущихся электронов. Если обозначить направление движения каждого электрона стрелкой, то беспорядочное движение электронов в проводнике можно изобразить так, как это сделано на рис. 1.

 

Рисунок 1. Беспорядочное движение электронов в проводнике

Показанная на рис. 1 картина резко изменится, если металлический проводник внести в электрическое поле (будем называть это поле внешним). Мы уже знаем, что электрон под действием сил электрического поля перемещается от точек с меньшим потенциалом к точкам с большим потенциалом. Значит, свободные электроны начнут перемещаться в одном направлении, причем каждый из них в отдельности будет совершать беспорядочное движение. Движение свободных электронов в этом случае напоминает полет пчелиного роя: отдельные пчелы перемещаются в самых различных направлениях, а весь рой летит в какую-то определенную сторону.

В результате перемещения электронов на одном конце проводника образуется их избыток, а на другом — недостаток. Проводник перестанет быть нейтральным. Электрическое поле, созданное проводником (внутреннее электрическое поле), нейтрализует действие внешнего электрического поля. Движение электронов, а значит, и электрический ток в проводнике прекратятся. Заметим, что в рассмотренном случае электрический ток в проводнике существует доли секунды, так как перераспределение электронов происходит очень быстро.

Определение: Упорядоченное, т. е. направленное в одну сторону, движение электронов в металлическом проводнике называется электрическим током.

Следовательно, электрический ток в металлическом проводнике — это одна из форм движения материи, проявляющаяся в механическом перемещении мельчайших электрически заряженных частиц материи — электронов.

Рассмотрим простой пример. Пусть имеются два разноименно заряженных шара (рис. 2).

Рисунок 2. Электрический ток в металлическом проводнике

Шары соединены металлическим проводником. Очевидно, что под действием сил электрического поля, существующего между шарами, свободные электроны проводника начнут перемещаться в направлении, указанном стрелкой, т. е. в проводнике возникнет электрический ток. Электроны из проводника попадут на шар А, а избыточные электроны, имеющиеся на шаре Б (шар Б заряжен отрицательно), перейдут в проводник. Вследствие этого потенциалы обоих шаров станут одинаковыми и ток в проводнике прекратится.

Сказанное хорошо иллюстрируется следующим примером (рис. 3).

Рисунок 3. Опыт с сосудами, наполненными водой и соединенными трубкой АБ. а) — разность уровней в сосудах равна нулю, движения воды в трубке А Б нет; б) — уровень воды в правом сосуде выше, чем в левом, вода в трубке АБ течет справа налево; в) — движение воды в трубке непрерывно, если искусственно поддерживается разность уровней воды в сосудах (например, при помощи насоса); г) — уровень воды в левом сосуде выше, чем в правом, вода в трубке АБ течет слева направо.

Имеются два сосуда, наполненные водой и соединенные трубкой. Если уровень воды в левом и правом сосудах одинаковый, то движения воды в трубке А Б нет (рис. 3, а). Но как только уровень воды в правом сосуде станет больше, чем в левом (рис. 3, 6), вода потечет по трубке АБ справа налево. Течение воды прекратится, когда разность уровней станет равной нулю. Для того чтобы вода протекала в трубке АБ непрерывно, нужно искусственно, затрачивая некоторую энергию, поддерживать разность уровней в сосудах. Это можно сделать, например, при помощи насоса (рис. 3, в). Если уровень воды в левом сосуде будет больше, чем в правом, то в трубке АБ направление движения воды будет слева направо (рис. 3, г).

Сравнивая пример с заряженными шарами (рис. 2) и пример с сосудами (рис. 3), можно сказать, что разность потенциалов соответствует разности уровней, а электрический ток — движению воды в трубке. Конечно, это только чисто внешнее сходство.

Рассмотренные два примера позволяют сделать вывод об условии непрерывного прохождения электрического тока в проводнике: электрический ток проходит по проводнику непрерывно только в том случае, если между концами проводника непрерывно поддерживается разность потенциалов.

На примере с заряженными шарами (см. рис. 2) можно хорошо уяснить разницу между скоростью движения электронов и скоростью распространения электрического тока. Известно, что скорость движения электронов составляет доли миллиметра в секунду (величина этой скорости зависит от напряженности поля под действием, которого перемещается электрон.), а скорость распространения электрического тока —300 000 км/сек. В самом деле, достаточно электрону из проводника перейти на шар А, как практически в то же мгновение электрон из шара Б перейдет в проводник. Хотя сам электрон движется сравнительно медленно, но скорость передачи движения от одного электрона к другому огромна. Вот почему при включении рубильника на электростанции практически мгновенно вспыхивают электрические лампы во всем городе.

content

Share
Published by
content

Recent Posts

Магнитное поле тока. Магнитные силовые линии

Разница между энергией электрического поля и энергией магнитного поля примерно такая же, как между энергией,…

1 год ago

Постоянные магниты

Когда-то легендарный пастух Магнес, нашел природный магнитный камень, притягивающий железо. В последствии этот камень назвали магнетит или магнитный…

1 год ago

Соединение конденсаторов

В электрических цепях применяются различные способы соединения конденсаторов. Соединение конденсаторов может производиться: последовательно, параллельно и последовательно-параллельно (последнее иногда называют смешанное соединение конденсаторов). Существующие…

1 год ago

Обозначение конденсаторов

Обозначение конденсаторов на схемах определено ЕСКД ГОСТ 2.728-74. Обозначения условные графические в схемах. Резисторы, конденсаторы. Итак,…

1 год ago

Виды конденсаторов

Узнав, что же такое конденсатор, рассмотрим, какие бывают виды конденсаторов. Итак, виды конденсаторов можно классифицировать по…

1 год ago

Энергия поля конденсатора

Вся энергия заряженного конденсатора сосредотачивается в электрическом поле между его пластинами. Энергию, накоп­ленную в конденсаторе, можно определить…

1 год ago