Влияние качества поверхности на эксплуатационные свойства деталей машин

На эксплуатационные свойства деталей машин существенно влияет шероховатость обработанной поверхности, однако, например, гладко обработанная поверхность не всегда является наиболее износоустойчивой, так как для удержания смазки на поверхностях трущихся деталей должны существовать микронеровности. В этом случае с учетом конкретных условий трения устанавливают оптимальную шероховатость поверхности.

На износоустойчивость поверхности влияют сопротивляемость поверхностного слоя разрушению и макрогеометрические отклонения, которые вызывают неравномерный износ отдельных участков. Волнистость приводит к увеличению удельного давления, так как трущиеся поверхности соприкасаются по выступам волн; то же происходит и при микронеровностях поверхностей, причем выступы микронеровностей могут деформироваться — сминаться или даже срезаться. Вершины микронеровностей могут вызывать разрывы масляной пленки, и в местах разрывов создается сухое трение.

Во многих случаях прочность деталей машин также зависит от шероховатости поверхности. Установлено, что наличие рисок, глубоких и острых царапин создает очаги концентрации напряжений, которые в дальнейшем приводят к разрушению детали. Такими очагами могут являться также впадины между гребешками микронеровностей. Это не относится к деталям из чугуна и цветных сплавов, в которых концентрация напряжений проявляется в меньшей степени.

Прочность соединений с натягом также определяется высотой микронеровностей; при запрессовке одной детали в другую фактический натяг отличается от натяга при запрессовке деталей тех же диаметров с гладкими поверхностями.

От шероховатости поверхности зависит устойчивость ее против коррозии. У более гладкой поверхности меньше площадь соприкосновения с корродирующей средой и меньше влияние среды. Чем глубже впадины микронеровностей и чем резче они очерчены, тем больше проявляется разрушающее действие коррозии, направленное вглубь металла.

content

Share
Published by
content

Recent Posts

Магнитное поле тока. Магнитные силовые линии

Разница между энергией электрического поля и энергией магнитного поля примерно такая же, как между энергией,…

12 месяцев ago

Постоянные магниты

Когда-то легендарный пастух Магнес, нашел природный магнитный камень, притягивающий железо. В последствии этот камень назвали магнетит или магнитный…

12 месяцев ago

Соединение конденсаторов

В электрических цепях применяются различные способы соединения конденсаторов. Соединение конденсаторов может производиться: последовательно, параллельно и последовательно-параллельно (последнее иногда называют смешанное соединение конденсаторов). Существующие…

12 месяцев ago

Обозначение конденсаторов

Обозначение конденсаторов на схемах определено ЕСКД ГОСТ 2.728-74. Обозначения условные графические в схемах. Резисторы, конденсаторы. Итак,…

12 месяцев ago

Виды конденсаторов

Узнав, что же такое конденсатор, рассмотрим, какие бывают виды конденсаторов. Итак, виды конденсаторов можно классифицировать по…

1 год ago

Энергия поля конденсатора

Вся энергия заряженного конденсатора сосредотачивается в электрическом поле между его пластинами. Энергию, накоп­ленную в конденсаторе, можно определить…

1 год ago